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Abstract

Laminar slip-flow forced convection in rectangular microchannels is studied analytically by applying a modified
generalized integral transform technique to solve the energy equation, assuming hydrodynamically fully developed flow.
Results are given in terms of the fluid mixed mean temperature, and both local and fully developed mean Nusselt
numbers. Heat transfer is found to increase, decrease, or remain unchanged, compared to non-slip-flow conditions,
depending on two dimensionless variables that include effects of rarefaction and the fluid/wall interaction. The tran-
sition point at which the switch from heat transfer enhancement to reduction occurs is identified for different aspect

ratios. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Rarefaction effects must be considered in fluids in
which the molecular mean free path is comparable to
the system’s characteristic length. In this case, the
fluid’s molecular structure becomes more significant
and the continuum assumption is no longer valid. The
fluid exhibits non-continuum effects such as slip-flow
and thermodynamic non-equilibrium (temperature
jump) at the gas—solid interface. Traditional examples
of fluids in the slip-flow regime [1] include low-pres-
sure fluids such as those occurring in vacuums and in
the upper atmosphere. The recent development of
microscale thermal fluid systems has created renewed
interest in this field of study. Microfluidic systems
typically have characteristic lengths on the order of 1
to 100 pm and are often operated in gaseous envi-
ronments at standard conditions where the molecular
mean free path is on the order of 100 nm. Thus
microfluidic systems must take into account rarefac-
tion, or non-continuum, effects even at standard
conditions.

The Knudsen number Kn, defined as the ratio of the
molecular mean free path 4 to the characteristic length
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of the system, is the parameter used to classify fluids that
deviate from continuum behavior. For small values
(Kn < 1073), the fluid is considered to be a continuum,
while for large values (Kn > 10), the fluid is considered
to be a free molecular flow. The slip-flow regime to be
studied here, is near the continuum region and is clas-
sified as 1073 < Kn < 1071,

Flows in the slip-flow regime have traditionally been
modeled using the Navier-Stokes and energy equations
modified by boundary conditions that contain the
rarefaction effects on the velocity and temperature fields.
Eckert and Drake [1] have indicated that there is strong
evidence to support this approach. More recently, Liu
et al. [2] and Arkilic et al. [3] found that the Navier—
Stokes equations, when combined with slip-flow
boundary conditions, yield results for pressure drop and
friction factor that are in agreement with experimental
data for some microchannel flows. The Graetz problem
considers the developing temperature field in a circular
tube for a fluid that is fully developed hydrodynami-
cally. This traditional problem has been modified
through the slip-flow and temperature jump boundary
conditions to study internal convective heat transfer
occurring in circular tubes in the slip-flow regime. Shih
et al. [4], Barron et al. [5,6], and Wang [7] have investi-
gated this problem for an isothermal wall condition.
Their results indicate that the rarefaction effects, mani-
fested as slip-flow at the boundary, augment heat
transfer. However, there are two simplifications adopted
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Nomenclature

a one-half of channel width

a non-dimensional one-half of channel
width, a/D

A defined in Eq. (12)

A, cross-sectional area

b one-half of channel height

b non-dimensional one-half of channel
height, b/D

By defined in Eq. (13)

D hydraulic diameter, 4ab/(a + b)

Djjnn defined in Eq. (36)

F; defined in Eq. (14)

F thermal accommodation coeflicient

F, tangential momentum accommodation
coeflicient

Gy defined in Eq. (15)

h heat transfer coefficient

k thermal conductivity

Kn Knudsen number, 1/D

M defined in Eq. (33)

N summation truncation number
N* summation truncation number

Nu local Nusselt number
Nug, fully developed Nusselt number for
slip-flow

Nu,. s fully developed Nusselt number for
non-slip-flow

Nuy, mean Nusselt number

p pressure

P non-dimensional pressure, p/(pu?)
Pe Peclet number, RePr

P defined in Eq. (46)

Pr Prandtl number

Okm defined in Eq. (45)

R aspect ratio, bla

Re Reynolds number, u,,D/v
T fluid temperature
To inlet fluid temperature
Ty wall temperature
u streamwise velocity
Uy mean streamwise velocity
U non-dimensional streamwise velocity,
u/ Uy
X horizontal transverse coordinate
X non-dimensional horizontal transverse co-

ordinate, x/D

y vertical transverse coordinate

Y non-dimensional vertical transverse
coordinate, y/D

z axial coordinate

zZ non-dimensional axial coordinate, z/(PeD)

Greek symbols

B non-dimensional variable, f,/f,

B. transition value of f

b dimensionless variable, defined in Eq. (4)

B dimensionless variable, defined in Eq. (3)

y ratio of specific heats

n eigenvalue, Eq. (29)

v kinematic viscosity

0 non-dimensional temperature, (T — Ty,)/
(o - T)

O non-dimensional fluid mixed mean
temperature

0; transformed potentials

A molecular mean free path

I dynamic viscosity

¢ eigenvalue, Eq. (30)

¢ eigenvalue, Eq. (16)

D, defined in Eq. (40)

D defined in Eq. (39)

@ defined in Eq. (41)
universal gas constant

in these studies that reduce the applicability of the re-
sults. First, the temperature jump boundary condition
was actually not directly implemented in these solutions.
Second, both the thermal accommodation coefficient F;
and the momentum accommodation coefficient F, were
assumed to be unity. This second assumption, while
reasonable for most fluid-solid combinations, produces
a solution limited to a specific set of fluid—solid condi-
tions. Ameel et al. [8] studied the related Graetz problem
involving a constant heat flux at the wall. In this case,
increasing rarefaction effects produced a reduction in
heat transfer. An indirect solution method, which uti-
lizes the eigenvalue problem for the isothermal case, was
implemented. On the other hand, Wang et al. [9] ob-
tained the analytical solution of the extended Graetz
problem for isoflux wall conditions through a direct

solution method. Once again, the slip effects were shown
to reduce heat transfer. In both Ameel et al. [8] and
Wang et al. [9], the accommodation coefficients were
assumed to have values of unity.

A generalized investigation of the extended Graetz
problem was considered by Larrode et al. [10]. The ef-
fects of rarefaction and the fluid/wall interaction were
included through the introduction of two non-dimen-
sional parameters. One of these dimensionless par-
ameters is a measure of the degree of rarefaction and is
the product of the Knudsen number Kn and a term that
includes the tangential momentum accommodation co-
efficient F,. The second parameter is a function of the
surface accommodation coefficients, the ratio of the fluid
specific heats y, and the Prandtl number Pr. The results
from Larrode et al. [10] indicate that heat transfer de-
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pends both on the degree of rarefaction and on the
surface accommodation coefficients. The values of the
two non-dimensional parameters were found to influ-
ence the heat transfer, which may increase, decrease, or
remain unchanged when compared to non-slip-flow. Yu
and Ameel [11] studied slip-flow heat transfer in a
microscale gap formed from isothermal surfaces. Con-
trary to all previous studies, axial conduction effects
were included. Their results were similar to those of
Larrode et al. [10]; however, the inclusion of axial con-
duction was found to increase heat transfer and the
thermal entrance length.

All of the previously mentioned studies were con-
ducted for microtubes with circular cross-sections or, in
the case of Yu and Ameel [11], in a microscale gap.
However, most microfluidic systems will utilize
microchannels with either rectangular or trapezoidal
cross-section due to constraints imposed by the most
common microfabrication technologies. Papautsky et al.
[12] and Stanley et al. [13] describe two technologies,
surface micromachining and micromilling, used to
create metallic rectangular microchannels for use in
micro thermal fluid systems. Thus, in the realization of
many proposed microscale thermal fluid systems, rect-
angular microchannels will be the primary mode of
fluid transport. This provides strong motivation for
investigations of slip-flow heat transfer in rectangular
microchannels.

2. Analysis

Analytical slip-flow studies have traditionally been
based on the continuum form of the Navier-Stokes
equations and energy equation with the slip-flow ef-
fects concentrated in the additional terms in the tan-
gential velocity and temperature boundary conditions
[1]. These new boundary conditions represent velocity
slip and temperature jump conditions at the gas—sur-
face interface, and for the y-direction are given as
[1,14,15]

Ou RT\'? ) oT
u(x>b) - |:_[))VA5+3(8_TE) ?E ) (1)
y=b
or 1 ,
T(x,b,z) = Ty, = {*ﬁtZ@Jrﬁ” ]}’177 (2)

where f, and f5, are defined as

2-F
ﬁvav
2-F 2 1

b= xim

and F, and F; are the tangential momentum accommo-
dation coefficient and thermal accommodation coef-
ficient, respectively. F, and F; are parameters that
describe the gas—surface interaction and are functions of
the composition and temperature of the gas, the gas
velocity over the surface, and the solid surface temper-
ature, chemical state, and roughness. Values of the ac-
commodation coefficients range from near 0 to 1, where
these values represent specular reflection and diffuse
reflection, respectively. For most engineering applica-
tions, values of the accommodation coefficients are near
unity [1,14]; however, F{ may vary in a wide range from
1072 to 1.0 [1]. In non-dimensionalizing the temperature
jump boundary conditions, the ratio of 5, to f§, appears
and is thus defined as

_bk
B

The first-term in Eq. (1) represents velocity slip due
to the y-direction transverse velocity gradient while the
second-term represents thermal creep due to the tem-
perature gradient in the flow direction. Since A oc T7'/2,
the second-term is second order in A. At the same time,
0/0y > 0/0z; thus, the second-term in Eq. (1) is negli-
gible. The first-term in Eq. (2) represents temperature
jump due to the y-direction transverse temperature
gradient while the second-term represents slip velocity
viscous heating [15]. With the typical low Eckert num-
ber assumption, this term is also negligible. Therefore,
only the first-terms of the two slip-flow boundary con-
ditions will be retained. The slip-flow boundary condi-
tions in the x-direction have a similar form as Egs. (1)
and (2).

The velocity profile for slip-flow can be determined
from the z-momentum equation assuming a Newtonian
fluid, negligible body forces, constant properties, and
fully developed steady state flow. The applicable non-
dimensional z-momentum equation is

B (5)

QU PU 1 dP

X o pdz ()

With the origin of the coordinate system at the cen-
terline of the rectangular channel of sides 2a and 2b
and the x-axis and y-axis in the horizontal and vertical
directions, respectively, the flow boundary conditions
are

ou
& o = 07 (7)
|:U + (ﬁvKn)gg] B =0, (8)
ou
67 o = 0’ (9)
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ou
|:U—|— (pKn) @YL,Z,; =0. (10)

Ebert and Sparrow [16] have obtained the non-di-
mensional velocity profile by solving the problem given
by Egs. (7)—(10). Consistent with Ebert and Sparrow
[16], both u and u, are normalized with (D*/u)(dp/dz);
therefore, the pressure gradient is not explicit in U. The
solution in terms of the current non-dimensional
parameters is

U(x, Y):Ainﬂ(Y)Gk(X), (11)

sin’(¢,b)
b+ (B,Kn) sin’(¢;b)

A tanh(¢;a) )
X |:¢ia - 1 + (ﬁvKn)(Z)i tanh(¢,d)} } 7 (12)
5 sin(¢,b) , (13)
916+ (B.Kn) sin® (9,0
R(Y) = cos(@ ) -

L cosh(¢X)
Gi(X) =1 cosh(¢,a) + (B,Kn) e, sinh(¢p,a)

and the eigenvalues ¢, are determined from the fol-
lowing transcendental equation

(15)

cot(¢b) = (BKn)¢y, k=1,2,3,... (16)

For hydrodynamically fully developed flow, high
Peclet number, negligible energy dissipation, and
constant properties, the dimensionless energy equation
and thermal boundary conditions and initial condition
are:

%+%=U(X,Y)g—g, (17)
g’—ﬁ =0 (18)
|:0 + B(B,Kn) g]){:d =0, (19)
% =0 (20)
o pskn G| =o 1)

0, =1 (22)

The solution to the problem given by Egs. (17)-(22)
cannot be acquired using classical methods, such as
separation of variables and the classical integral trans-
form technique, since the velocity solution and the re-
lated eigenvalue problem are non-separable. Aparecido
and Cotta [17] and Cotta [18] used a modified general-
ized integral transform technique to solve the problem of
thermally developing laminar flow in a rectangular duct.
The authors claimed that the method is computationally
inexpensive and efficient. This method will also be used
here as it provides the means to overcome the non-sep-
arable nature of the problem. First, two auxiliary
problems are created that alleviate the difficulties asso-
ciated with the eigenvalue problem. The first auxiliary
problem is:

&y X

THE) L pwnx) =0, (23)

dy(n,X)

—_ =0, 24
rra P (24)

dy(n, X
W) + gk IR | o 25)
X=a

The second auxiliary problem is

dZ y7 Y }

% +E0(&,¥) =0, (26)

dw(&,Y) B

=0 (27)

dw(&,Y)

o =0. (28)

Y=b

[w@, Y) + BB Kn)

The eigenfunctions from the two auxiliary problems
are Y, =cos(n,X) and w, =cos(¢,Y), respectively,
while the corresponding eigenvalues can be determined
from the following two transcendental equations:

COt(nid) = ﬂ(ﬁvKn)rIH i= 17 27 37 ey (29)
cot(&,b) = B(BKn)E,, m=1,23,... (30)

The auxiliary problems allow the creation of an integral
transform pair that utilize the eigenfunctions and
eigenvalues defined immediately above. This integral
transform pair is:

Transform

0 .(Z) = /0& /Oh cos(n;X) cos(&,Y)0(X,Y,Z)dXdY.
(31)
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Inversion
0(X,Y,Z) ZZ " cos(n,X) cos(&,Y)0;,(Z),
i=1 m=l
(32)
where
a sin(2n,a) b sin(2¢,b)
M= 220y, = o T
i 2 + 41’], 9 m 2 + 4ém (33)
Eq. (17) is now operated on by
a b
/ / cos(1;X) cos(&,Y)dXx dY. (34)
Jo Jo

After applying the inversion formula given by Eq. (32)
and applying orthogonal properties of the eigenfunc-
tions, this procedure will yield

iiD ) |+ 2),(2) =0, (35)

Jj=1 n=l

where

1 a
Diimn:W/ /0 cos(n;X) cos(1;X) cos(&,,Y)

x cos(&,Y)U(X,Y)dXdY. (36)
The transformed initial condition becomes
0;,(0) = (n,&,)" sin(n,a) sin(&,b). (37)

The double integral in Eq. (36) can be evaluated to
produce

A
Dz/mn :MM, szk L//{¢mnk7 (38)

where
D= |21+ (B Kn) b tanh(,a)]|

[m,wsm[(w, +11,)a] +¢cos | (n,+1,)a] tanh(¢,a)
X

('1i+'1j) +¢k

(=) sin| (1= n,)a + gycos [ (1, —n,)a] tanh(9,a)
! (n;— ’7]')2 + d’;% 7

(39)

0 when n; #1;,
o= {% [ﬁ + {sin[(n; +n,)al/ (n; +n,)}} when n, =1,
(40)

sin[(fm +&+ d)k)l;] Sin[(ém - ¢k)l;]
A A

sin[ (&, — &, + ¢8| sin[(&, — &, — ¢,)5]
GGt quénfaﬁk

* g
mnk 74

+

(41)

Eqgs. (35)-(41) together produce a infinite system of
coupled first-order ordinary differential equations with
constant coefficients that can be solved for the trans-
formed potentials ;. This infinite system, however,
must be truncated to a sufficiently large finite order such
that the desired accuracy is produced. The truncated
system of equations is written as:

N do:,(2) _
2 2P
i=1,2,...,N, m=12,...,N". (42)

The finite system can be expressed in matrix form and
solved using well-known algorithms readily available in
commercial software packages. Once the transformed
potentials are found, the inversion formula given by Eq.
(32) is invoked to compute the complete temperature
profile

*

(MiM,,) ™" cos(n,X)
1

&aY)0,,(2). (43)

=4

0X,Y,2)=>

=1 m

X

Cos

—

The non-dimensional mixed mean fluid temperature can
then be determined from its definition

0m(2) fAic / UX,Y)0(X,Y,Z)d4
- = Z MNI<MM ) BiOw Pl (7). (44)
where
ka
b + sin [(d)k + fm)B]
(¢ + &) when ¢, = &,
= (¢4 = &) sinf(¢ + &,)0] (43)

+(¢k + ém) Sin[(¢k - im)Z;”

x(dp — &) when ¢ # &,

sin(17,a) o sin(n,a) + ¢ cos(n;a) tanh(¢,a)
e+ @)1+ (BKn)y tanh(9,a)]
(46)

Py =
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The local Nusselt number Nu(Z) can be determined from
an energy balance on a fluid element, which utilizes the
axial gradient of the mixed mean temperature, to pro-
duce

_h(z)D 1 do.(2)
N2 ===="35.2 —az - “7)
The mean Nusselt number can then be computed from
1 /? Ny L
Nun(Z) = 7 /0 Nu(Z')dZ' = 2z In[0,,(2)]. (48)

It can be shown that the non-slip-flow solutions de-
rived by Aparecido and Cotta [17] are readily recovered
from the above solution by setting ,Kn = 0.

3. Results and discussion

Numerical results for the solution of the set of initial
value problems for the first-order ordinary differential
equation system were obtained through the use of the
matrix operations in MATLAB. A sensitivity analysis
was performed to determine the optimum finite number
of terms to include in the infinite series contained in the
analytical solution. Values of N = N* = 20 were deter-
mined to provide the desired level of convergence and
accuracy for Z > 10~* (consistent with Aparecido and
Cotta [17]). Values less than 20 resulted in poor con-
vergence or accuracy while values greater than 20 in-
creased the computational time (found to vary with N°)
significantly without an improvement in accuracy.

The solution method was validated by comparing
results obtained for the fully developed Nusselt number
for non-slip-flow Nu, s with similar data available in the
literature (Table 1). Considering the fact that data from
the literature was obtained from reported correlations,
good agreement was obtained between the current solu-
tions and those from the literature for a wide range of
aspect ratio. A fully developed thermal condition was
assured by setting Z = 30 in the determination of Ny s
from Eq. (47). With the location far downstream from
the microchannel entrance, convergence may be obtained
with acceptable accuracy with low values of N and N*.
Therefore, N = N* = 5 were used for computational ef-
ficiency to obtain the Nu, s data.

A dimensional analysis and the solution given by
Egs. (11)-(16) indicate that the velocity U is a function

of X, Y, R, and f Kn. Considering that temperature 0 is
a function of U and the problem statement given by
Egs. (17)+(22), 6,0,, and Nu are all functions of
X,Y,Z,R,p, and f,Kn. The product f,Kn provides a
measure of the rarefaction that results in slip-flow,
while f indicates properties of the fluid/wall interaction.
Setting f,Kn = 0 produces a particular case in which
both velocity slip and temperature jump are absent,
recovering the classical case. §,Kn typically has a range
from 103 to 107!, corresponding to the slip-flow re-
gion. On the other hand, f influences the temperature
profile alone. Thus, = 0 artificially removes temper-
ature jump while maintaining velocity slip. It should be
noted that =0 implies that F =2, which is not
physically possible. However, = 0 provides the com-
parative base case for the effects of the temperature
jump boundary condition. Referring to the values of F;
and F, given in [1,15], f may be in a wide range from
close to unity to more than 100 for actual wall surface
conditions. f§ is assumed to vary in the range from 0 to
10 for the studies presented here. It should also be
noted that ff ~ 1.667 is a typical value for many engi-
neering applications, corresponding to F, = 1,F =1,
y=14, and Pr=0.7.

The developing mixed mean temperature over the full
slip-flow regime is illustrated in Fig. 1 for a nominal
aspect ratio of R =2 and f = 1.667. The rarefaction
effect is shown to produce an increase in the local mixed
mean temperature 6, for increasing slip-flow. Increasing
rarefaction effects also increase the thermal entrance
length, although fully developed conditions are obtained
at approximately Z = 0.7 for all ,Kn. The effect of § on
the developing mixed mean temperature are similar, as
shown in Fig. 2 for R =2 and f,Kn = 0.04.

The axial development of the local Nusselt number
Nu over the entire slip-flow regime is shown in Figs.
3-5for R=2 and #=0.1,0.5, and 1.667, respectively.
For f=0.1, increasing f,Kn increases Nu and Nu.,.
This trend becomes less obvious in Fig. 4 for = 0.5.
Increasing f,Kn to 0.04 increases Nu over the contin-
uum value; however, further increases in f§,Kn result in
decreases in Nu. Increasing f# to 1.667 (Fig. 5) results
in a trend that is the reverse of that shown in Fig. 3.
Now, increasing f§,Kn produces a decrease in the heat
transfer when compared to the continuum condition.
These heat transfer effects may be explained by con-
sidering the physical significance of the rarefaction

Table 1

Nty ns for f,Kn = 0 (non-slip flow), N =5, and Z = 30
R 1 2 3 4 5 6 8 10
Present results 2.978 3.392 3.958 4.440 4.828 5.138 5.593 5.907
Aparecido and Cotta [17] 2.978 3.392 3.958 4.440 4.810 5.143 5.607 5.930
Shah and London [20] 2.979 3.389 3.950 4.435 4.826 5.138 5.596 5.911
Miles and Shih [20] 2.976 3.391 3.956 4.439 NA 5.137 5.595 NA
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Fig. 1. Axial development of mixed mean temperature
parameterized with f,Kn for R = 2 and f = 1.667.
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Fig. 2. Axial development of mixed mean temperature
parameterized with § for R =2 and f,Kn = 0.04.
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B=0.1 R=2

B,Kn=0.00 1
B,Kn=0.04
______ B,Kn=0.08
B Kn=0.12 1

20

Fig. 3. Developing Nu for R =2 and ff = 0.1 and parameter-
ized with p Kn.
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p=0.5 R=2
20f X B,Kn=0.00 1
~__  BKn=0.04
\
. N B, Kn=0.08
wr N —-. B/Kn=0.12
N
FRY
-4 S
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sk
10 10° 10 107" 10°

Fig. 4. Developing Nu for R=2 and f§ = 0.5 and parameterized
with f,Kn.

B=1.667 R=2
20} . BvKn=0.00 1
} B Kn=0.04
B Kn=0.08
15} —.—..  B,Kn=0.12 1

Fig. 5. Developing Nu for R=2 and f = 1.667 and par-
ameterized with f,Kn.

effects with the departure from the continuum state.
With increasing rarefaction, less momentum and en-
ergy transport will occur as velocity slip and temper-
ature jump decrease the velocity and temperature
gradients at the surfaces [1]. For low f, the increasing
slip velocity that accompanies the increase in f,Kn
dominates and heat transfer is enhanced. At large f,
on the other hand, the decrease in temperature gradi-
ent at the surfaces that accompanies the increased
temperature jump dominates and, thus, heat transfer
decreases.

The effect of temperature jump on the axial evolu-
tion of Nu is shown in Fig. 6 for R = 2 and f Kn = 0.04
(a mid-slip-flow regime condition). Excluding tempera-
ture jump (ff = 0) produces an apparent increase in heat
transfer. When temperature jump is properly accounted
for, increasing f results in a decrease in heat transfer.
Once again, this effect is a result of the decreasing wall
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25 T T T

R=2 B Kn=0.04

\ — PB=0
. ---  p=05

Fig. 6. Developing Nu for R =2 and f,Kn = 0.04 for a wide
range of f.

25

B,Kn=0.04

R =1 J

--- R=

B=10

Fig. 7. Effect of aspect ratio R on developing Nu for
p,Kn = 0.04 and for both high and low f.

normal temperature gradient with . Note that at large
p, the Nu profile is nearly flat, indicating a shortened
entrance length, and that considerable parametric dif-
ferences in Nu are present near the microchannel
entrance. In fact, Nu(0) can be shown to be finite for
slip-flow conditions. Yu and Ameel [19] have proposed
that for either isothermal or isoflux boundary condi-
tions in a channel of any cross-section that
Nu(0) = 1/ (BB,Kn).

The effect of aspect ratio on the axial development
of Nu for both low and high values of f and
p.Kn=0.04 is shown in Fig. 7. Data for R = oo,
originally reported by Yu and Ameel [11], is included in
Figs. 7 and 8 for completeness. At low f3, heat transfer
increases with increasing aspect ratio, which is consis-
tent with the non-slip solutions of Aparecido and Cotta
[17]. At high S, the Nu profile is nearly flat, once again
indicating a shortened entrance length. In addition,

R | 1 2 4 6 10 o
NU...ns [2.978 3.392 4.440 5.138 5.907 7.541

! L 1 1 i
o 0.02 0.04 0.06 0.08 0.1 0.12

v

Fig. 8. Effects of R, 8, and f,Kn on normalized Nu,, (normal-
ization utilizes the corresponding non-slip Nu,, at the same R).

heat transfer is less than that at low f while there is
little effect of aspect ratio on Nu. This indicates that
temperature jump effects dominate over the effects of
the channel geometry.

Heat transfer for thermally fully developed flow is of
particular interest. The complete parametric analysis of
Nu,, is presented in Fig. 8, where the Nusselt number
data have been normalized with the non-slip-flow Nus-
selt number Nu,, s at the same aspect ratio. Values of
Nuy, s are provided to facilitate estimates of actual
values of Nu,, for a given combination of  Kn, f§, and R.
Normalized Nu,, is shown to decrease with both in-
creasing f§ and increasing R, independent of f§,Kn. Note
that this normalized Nu,, trend with respect to R is the
opposite of that for Nu,, due to the increase in Nuy, s
with R. Heat transfer is shown to increase, decrease, or
remain nearly unchanged in comparison with non-slip-
flow, depending on the combination of the three inde-
pendent parameters. The maximum increase and de-
crease in heat transfer are approximately 20% and 80%,
respectively. For most engineering applications, where
p = 1.667, heat transfer is always reduced when slip-flow
occurs; the degree of reduction can be on the order of
40%. The data shown in Fig. 8 for R =1 agree very
closely with the data given by Larrode et al. [10] for a
circular tube. The trends are the same and the actual
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Table 2

f transition values (f,)
R 1 2 3 4 5 6 8 10 0
P 0.67 0.50 0.38 0.32 0.29 0.28 0.27 0.25 0.20?

“From Yu and Ameel [11].

values agree within the accuracy available from graphi-
cal data.

For a given aspect ratio, a transition  may be esti-
mated that separates the region of heat transfer en-
hancement from that of heat transfer reduction. For
instance, at R =2, ~ 0.5 represents this transition
point. Thus, for f < 0.5, heat transfer is enhanced while
for f# > 0.5, heat transfer is reduced. Furthermore, heat
transfer increases with increasing f,,Kn for < 0.5 but
decreases with increasing f,Kn for f > 0.5. At f=0.5,
heat transfer may either increase (for f,Kn < 0.07) or
decrease (for f,Kn > 0.07). Similar f§ transition values
(B,) for other aspect ratios are determined from the
value of f for which the normalized Nu is unity at
p.Kn ~ 0.07. Values of 5, as a function of R are given in
Table 2. Note that 3, decreases with increasing R.

4. Conclusions

The slip-flow heat transfer problem in rectangular
ducts with constant wall temperature, representative of
gas flow in a microchannel, has been studied. A mod-
ified generalized integral transform method has been
used to solve the energy equation for the developing
temperature field. This method was implemented in
response to the non-separable nature of the velocity
profile and corresponding eigenvalue problem. Along
with the channel aspect ratio, two non-dimensional
variables, ,Kn and f, strongly influence heat transfer.
p.Kn represents a measure of the departure from the
continuum regime (with accompanying rarefaction ef-
fects) while f is a property of the gas—surface interac-
tion. Heat transfer was found to increase, decrease, or
remain unchanged, compared to non-slip-flow condi-
tions, subject to values of f,Kn, f, and R. A transition
value f, that separates the regions of heat transfer en-
hancement and heat transfer reduction was determined
as a function of aspect ratio. §, was found to decrease
with increasing aspect ratio. For a given aspect ratio,
increasing temperature jump (or f§) always reduces heat
transfer. Thermal entrance length was shortened when
p increases. The normalized fully developed Nusselt
number was found to decrease with increasing aspect
ratios. For small f, heat transfer increases with in-
creasing aspect ratio, but for large f this effect becomes
negligible. The effects of f and f,Kn on heat transfer
are a result of the reduction of the wall normal velocity
and temperature gradients with the increasing velocity

and temperature jump that accompany the departure
from the continuum regime.
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